我要啦免费统计
新闻详情
 
当前位置
固相萃取装置对心直动平底从动件盘形凸轮设计
作者:管理员    发布于:2016-12-21 09:00:07    文字:【】【】【
设已知凸轮基圆半径 !" 、凸轮轴心与摆杆中心的中心距 #$固相萃取装置" 、从动件(摆杆)长度 %"& 、从动件的最大摆 角"+*, 以及从动件的运动规律(如图 #$%)- 所示),凸轮以等角速度# 沿逆时针 %.( 第!章 凸轮机构及其设计 图 !"#$ 对心直动平底从动件盘形凸轮设计 图 !"#% 摆动尖顶从动件盘形凸轮设计 方向回转,要求绘制凸轮轮廓曲线。根据反转原理,当给整个机构以 &! 反转 后,凸轮将不动而从动件的摆动中心 ! 则以 &! 绕 " 点作圆周运动,同时从动 件按给定的运动规律相对机架 "! 摆动,因此凸轮轮廓曲线的设计步骤如下: !"# 凸轮轮廓曲线的设计 #’’ (!)选取适当的比例尺,作出从动件的位移线图,在位移曲线的横坐标上将 推程角和回程角区间各分成若干等分,如图 "#!$% 所示。与移动从动件不同的 是,这里纵坐标代表从动件的角位移!,因此其比例尺应为 ! && 代表多少角度。 (’)以 ! 为圆心、以 "( 为半径作出基圆,并根据已知的中心距 #!$ ,确定从动 件转轴 $ 的位置 $( 。然后以 $( 为圆心,以从动件杆长度 #$% 为半径作圆弧,交基 圆于 &( 点。$( &( 即代表从动件的初始位置,&( 即


为从动件尖顶的初始位置。 ())以 ! 为圆心,以 !$( 为半径作圆,并自 $( 点开始沿着 *" 方向将该圆 分成与图 "#!$% 中横坐标对应的区间和等分,得点 $! 、$’ 、.、$$ 。它们代表反 转过程中从动件摆动中心 $ 依次占据的位置。 (+)以上述各点为圆心,以从动件杆长度 #$% 为半径,分别作圆弧,交基圆于 &! 、&’ 、.、&$ 各点,得到从动件各初始位置 $! &! 、$’ &’ 、.、$$ &$ ;再分别作 !&! $! %! 、!&’ $’ %’ 、.、!&$ $$ %$ ,使它们与图 "#!$% 中对应的角位移相等, 即得线段 $! %! 、$’ %’ 、.、$$ %$ 。这些线段代表反转过程中从动件所依次占据 的位置,而 %! 、%’ 、.、%$ 诸点为反转过程中从动件尖顶所处的对应位置。 (")将点 %! 、%’ 、.、%$ 连成光滑曲线,即得凸轮的轮廓曲线。 "!" 直动从动件圆柱凸轮机构 圆柱凸轮的轮廓曲线是一条空间曲线,不能直接在平面上表示。但由于圆 柱面可以展开成平面,故圆柱凸轮展开便成为平面移动凸轮,因此可以运用前述 盘形凸轮的设计原理和方法,来绘制它展开后的轮廓曲线。 图 "#’( 直动从动件圆柱凸轮设计 图 "#’(, 所示为一直动从动件圆柱凸轮机构。设已知凸轮的平均圆柱体半 径 ’、滚子半径 "- 、从动件运动规律(如图 "#’(. 所示)以及凸轮的回转方向,则 !)+ 第!章 凸轮机构及其设计 圆柱凸轮轮廓曲线的设计步


骤为: (!)以 "!! 为底边作一矩形表示圆柱凸轮展开后的圆柱面,如图 #$"%& 所 示,圆柱面的匀速回转运动就变成了展开面的横向匀速直移运动,且 " ’ !!; (")将展开面底边沿 ( " 方向分成与从动件位移曲线对应的等分,得反转后 从动件的一系列位置; ())在这些位置上量取相应的位移量 #,得 !* 、"* 、.、!!* 若干点,将这些点光 滑连接得出展开面的理论轮廓曲线; (+)以理论轮廓曲线上各点为圆心,滚子半径为半径,作一系列的滚子圆, 并作滚子圆的上、下两条包络线即为凸轮的实际轮廓曲线。 !"#"# 用解析法设计凸轮轮廓曲线 随着近代工业的不断进步,机械也日益朝着高速、精密、自动化方向发展,因 此对机械中的凸轮机构的转速和精度要求也不断提高,用作图法设计凸轮的轮 廓曲线已难以满足要求。另外随着凸轮加工愈来愈多地使用数控机床,以及计 算机辅助设计的应用日益普及,凸轮轮廓曲线设计已更多地采用解析法。用解 析法设计凸轮轮廓曲线的实质是建立凸轮理论轮廓曲线、实际轮廓曲线及刀具 中心轨迹线等曲线方程,以精确计算曲线各点的坐标。下面以几种常用的盘形 凸轮机构为例来介绍用解析法设计凸轮轮廓曲线的方法,其应用程序见附录。
脚注信息
Copyright(C) 2010-2018 上海那艾精密仪器(幸运农场lizakeogh.com版权所有
sitemap.xml  网站地图 本站仪器:固相萃取仪 固相萃取装置
沪ICP备11035570号-1站长统计 排名优化支持:韬贝SEO
那艾认证

免责声明: 本站资料及图片来源互联网文章,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关,如用户分享不慎侵犯了您的权益,请联系我们告知,我们将做删除处理!